

Graphite Metallizing Now Offers Self Lubricating Bearings for Gas Burn-Off Flares

Oil Field Flares Operate Successfully with GRAPHALLOY® High Temperature Bearings

Yonkers, NY (PRWEB) July 19, 2013

Graphite Metallizing Corporation announces GRAPHALLOY® high temperature bearings for use in gas burn-off flares. These bearings are uniquely suited to help control the volatility of flares at oil and natural gas production sites.

This innovative development resulted from a customer requirement to overcome design problems in a control linkage. The high heat of these flares was causing bushing lubrication failures and this, in turn, caused the flare control systems to fail. These repeated failures resulted in unacceptable maintenance and replacement costs.

U.S. Environmental Protection Agency (EPA) regulations require that oil field flares destroy the volatile organic compounds emitted into the atmosphere in an environmentally friendly manner. To meet these requirements, oil field operators must use flares at their production sites that provide a "clean" burn. These flares must operate reliably at remote sites under all conditions.

Given the loss of lubrication within the faulty linkage, it became obvious that flare controls and gas burn-offs were not meeting EPA regulations nor providing clean burns.

The flare manufacturer tested other bearing materials. None met the challenge until GRAPHALLOY®, the high temperature self-lubricating graphite/metal alloy material was tested, approved and put to work.

Result? Custom produced GRAPHALLOY® Bearings were retrofitted to 1,000s of existing flares and are now standard on the new systems. Today, the bearings operate successfully - no stoppages!

Similar gas burn-off flares are also commonly found at refineries, chemical plants and natural gas processors.

More About GRAPHALLOY® and Graphite Metallizing Corporation

Graphite Metallizing Corporation of Yonkers, NY has been solving tough bearing problems for over 100 years. The company began in 1913 when two engineers developed a method for putting molten metal into carbon to create a new material called GRAPHALLOY®, a graphite/metal alloy.

Used in the manufacture of bushings, bearings and other components for machinery and process equipment, GRAPHALLOY® materials are self-lubricating, impervious to temperature extremes from -400 °F to +750 °F (-240 °C to 400 °C) and thrive in harsh environments where other bearings fail. Special grades provide reliable service up to 1000 °F (535 °C) and higher in non-oxidizing atmospheres.

GRAPHALLOY® can be the solution to the toughest bearing, bushing, thrust washer, cam follower, or pillow block bearing design problem. It is available in over 100 grades with specific properties that meet a wide range of engineering solutions and specifications. FDA accepted grades of GRAPHALLOY® are available for food contact equipment. NSF® International has certified two grades of GRAPHALLOY® material for use in municipal well pumps and water treatment plant applications.

In some applications, GRAPHALLOY® bearings have operated for up to 20 years without maintenance. Standard designs are available but most GRAPHALLOY products are custom designed to the unique requirements of the specific application. Graphite Metallizing Corporation is ISO certified. For more information about Graphite Metallizing and its products, please visit us online at http://www.graphalloy.com or call 914-968-8400.

For more information contact:

Graphite Metallizing Corporation: Eric Ford, eric.ford(at)graphalloy(dot)com, 914-968-8400

Contact Information

Eric Ford
Graphite Metallizing Corporation
http://www.graphalloy.com
914-968-8400

Disclaimer: If you have any questions regarding information in these press releases please contact the company listed in the press release.

Please do not contact PRWeb®. We will be unable to assist you with your inquiry.

PRWeb® disclaims any content contained in these releases. Our complete disclaimer appears here.